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Abstract— High-definition (HD) map construction methods
are crucial for providing precise and comprehensive static
environmental information, which is essential for autonomous
driving systems. While Camera-LiDAR fusion techniques
have shown promising results by integrating data from both
modalities, existing approaches primarily focus on improving
model accuracy, often neglecting the robustness of perception
models—a critical aspect for real-world applications. In this
paper, we explore strategies to enhance the robustness of
multi-modal fusion methods for HD map construction while
maintaining high accuracy. We propose three key components:
data augmentation, a novel multi-modal fusion module, and
a modality dropout training strategy. These components are
evaluated on a challenging dataset containing 13 types of
multi-sensor corruption. Experimental results demonstrate that
our proposed modules significantly enhance the robustness of
baseline methods. Furthermore, our approach achieves state-
of-the-art performance on the clean validation set of the
NuScenes dataset. Our findings provide valuable insights for
developing more robust and reliable HD map construction
models, advancing their applicability in real-world autonomous
driving scenarios.

I. INTRODUCTION

High-definition (HD) map construction is a critical task
for autonomous driving systems, providing rich semantic
and geometric road information essential for localization,
perception, and path planning. HD maps capture key details
such as lane boundaries and road markings, which are vital for
the precise operation of autonomous vehicles. While most ex-
isting research focuses on improving the accuracy of HD map
construction, multi-modal fusion approaches—integrating data
from complementary sensors like cameras and LiDAR—have
shown promising results by leveraging the strengths of both.

However, in real-world autonomous driving scenarios,
perception systems must operate under diverse and often
challenging conditions. These include sensor corruptions
caused by adverse weather (e.g., snow, fog), sensor failures
(e.g., camera crashes, LiDAR misalignment), and external
disturbances, all of which can significantly degrade model
performance. Despite these challenges, the robustness of
HD map construction models—defined as their ability to
sustain performance under such corruptions—has largely
been overlooked in previous studies. This oversight creates
a significant gap in ensuring the reliability and safety of
autonomous driving systems.

1Beijing Academy of Artificial Intelligence. E-mail:xshao@baai.ac.cn.
2Baidu Inc.
3Institute of Automation, Chinese Academy of Science.
4Nanjing University of Science and Technology.
5China North Artificial Intelligent & Innovation Research Institute.
6Institute of Information Engineering, Chinese Academy of Sciences.

To address this gap, we investigate the robustness of
multi-modal fusion methods for HD map construction while
maintaining high accuracy. Specifically, we aim to answer two
key questions: How do HD map construction models perform
under various sensor corruptions, and what strategies can
enhance their robustness without compromising accuracy?
To achieve this, we propose three key components: data
augmentation, a multi-modal fusion module, and training
strategies. These components are designed to improve the
resilience of HD map construction models against 13 types
of multi-sensor corruptions, including both single-source and
multi-source disruptions, as illustrated in Fig. 1.

We evaluate our approach on a Multi-Sensor Corruption
dataset and benchmark its performance against baseline
methods. Experimental results demonstrate that the proposed
components significantly enhance the robustness of HD map
construction models while achieving state-of-the-art perfor-
mance on the clean validation set of the NuScenes dataset.
These findings provide valuable insights for improving the
robustness and reliability of HD map construction models,
advancing their applicability in real-world autonomous driving
systems. To summarize, the contributions of this paper are
three-fold:

• Comprehensive Robustness Benchmarking: We con-
duct a systematic evaluation of multi-modal HD map
construction methods using a dataset with 13 types of
Multi-Sensor Corruption. This provides a thorough anal-
ysis of model performance under challenging conditions.

• Enhancing Framework: We propose three key compo-
nents—data augmentation, a novel multi-modal fusion
module, and a modality dropout training strategy—that
significantly enhance the robustness of multi-modal
fusion methods without sacrificing accuracy.

• State-of-the-Art Performance: Our approach not only
strengthens model resilience against sensor corruptions
but also achieves state-of-the-art results on the NuScenes
dataset’s clean validation set, demonstrating its effective-
ness in real-world autonomous driving scenarios.

II. RELATED WORK

A. HD Map Construction

The HD map construction task [1], [2], [3] focuses on
generating high-resolution, precise maps that provide instance-
level vectorized representations of geometric and semantic
elements, such as lane boundaries and road structures. These
maps are essential for accurate localization and path planning
in autonomous driving systems. Recent advancements in
camera-LiDAR fusion methods [4], [5], [6], [7], [8], [9] have
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Fig. 1. Overview of the Multi-Sensor Corruption dataset. Multi-Sensor Corruption includes 13 types of synthetic camera-LiDAR corruption combinations
that perturb both camera and LiDAR inputs, either separately or concurrently.

demonstrated the benefits of combining the semantic richness
of camera data with the geometric precision of LiDAR. A
particularly promising approach is BEV-level fusion, which
encodes raw inputs from both sensors into a unified Bird’s
Eye View (BEV) space. This method effectively integrates
complementary features from multiple modalities, achieving
superior performance compared to uni-modal approaches.
However, existing methods assume ideal conditions with
complete and uncorrupted sensor data, leading to poor
robustness in real-world scenarios where data may be missing
or compromised. Such reliance on perfect sensor inputs often
results in significant performance degradation or complete
system failure under adverse conditions. In this paper, we
investigate the critical factors necessary for achieving robust
multi-sensor HD map construction.

B. Autonomous Driving Perception Robustness
Recent research has increasingly focused on the robustness

of autonomous driving perception tasks [10], [11], [12], [13].
Studies such as RoBoBEV [14] evaluate the robustness of
Bird’s Eye View (BEV) perception, while others develop
more resilient models or propose strategies to enhance
system robustness [15]. Robo3D [16] benchmarks LiDAR-
based semantic segmentation and 3D object detection under
conditions of sensor corruption and failure. Zhu et al. [17]
assess the natural and adversarial robustness of BEV-based
models, introducing a 3D-consistent patch attack to improve
spatiotemporal realism in autonomous driving. Additionally,
MapBench [18] provides benchmarks for evaluating the
robustness of HD map construction methods. In this paper, we
investigate the robustness of camera-LiDAR fusion models
for HD map construction by designing 13 types of corruption
combinations that perturb camera and LiDAR inputs, either
individually or simultaneously. Our proposed RoboMap model
demonstrates superior robustness across diverse sensor failure
scenarios. To the best of our knowledge, RoboMap is the
first study to systematically explore the robustness of HD
map construction under multi-sensor corruptions.

III. MULTI-SENSOR CORRUPTION DATASET

Dataset Construction. In this paper, we investigate the
robustness of camera-LiDAR fusion-based HD map construc-

tion tasks under various multi-sensor corruptions. Following
the protocol established in [18], [19], we consider three
corruption severity levels: Easy, Moderate, and Hard, for each
type of corruption. The Multi-Sensor Corruption dataset is
constructed by corrupting the validation set of the nuScenes
dataset [20], which is widely adopted in recent HD map
construction research. The Multi-Sensor Corruption dataset
includes 13 types of synthetic camera-LiDAR corruption
combinations, perturbing camera and LiDAR inputs either
separately or concurrently, as illustrated in Fig. 1. These
corruptions are categorized into three groups: camera-only,
LiDAR-only, and multi-modal corruptions, addressing a wide
range of real-world scenarios. Specifically:

• Camera-Only Corruptions: We design 2 types of
corruptions using clean LiDAR data to simulate scenarios
where the camera system is compromised while the
LiDAR remains functional. These include:
– Camera Crash: Simulates a complete failure of the

camera system, where no visual data is available. This
tests the model’s ability to rely on LiDAR inputs.

– Frame Lost: Mimics intermittent camera failures,
where certain frames are dropped or missing. This
evaluates the model’s robustness to visual data.

• LiDAR-Only Corruptions: We create 2 types of cor-
ruptions using clean camera data to simulate scenarios
where the LiDAR system is compromised while the
camera remains operational. These include:
– Crosstalk: Simulates interference between LiDAR

sensors, where signals from one sensor affect another,
leading to noisy or inaccurate point cloud data.

– Cross-Sensor: Mimics misalignment or calibration er-
rors between LiDAR sensors, resulting in inconsistent
or distorted point cloud representations.

• Multi-Modal Corruptions: We propose 9 types of
corruptions that perturb both camera and LiDAR inputs
to simulate real-world scenarios where both modalities
are affected. These include:
– 4 combinations of the aforementioned failure types

(e.g., simultaneous Camera Crash and Crosstalk),
testing the model’s resilience to sensor failures.
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Fig. 2. Overview of the RoboMap Framework. The RoboMap framework begins by applying data augmentation to both camera images and LiDAR
point clouds. Next, features are efficiently extracted from the multi-modal sensor inputs and transformed into a unified Bird’s-Eye View (BEV) space using
view transformation techniques. We then introduce a novel multi-modal BEV fusion module to effectively integrate features from both modalities. Finally,
the fused BEV features are passed through a shared decoder and prediction heads to generate high-definition (HD) maps.

– 5 additional corruptions:
∗ Fog: Simulates reduced visibility in both camera

images and LiDAR point clouds due to dense fog.
∗ Snow: Mimics the impact of snowfall, which can

obscure camera images and scatter LiDAR signals.
∗ Motion Blur: Represents blurring in camera images

and distortion in LiDAR data caused by rapid
vehicle motion.

∗ Spatial Misalignment: Simulates misalignment
between camera and LiDAR data due to calibration
errors or physical shifts.

∗ Temporal Misalignment: Mimics timing discrep-
ancies between camera and LiDAR data, where
inputs from the modalities are not synchronized.

Using this dataset, we conduct a systematic evaluation of
the robustness of multi-modal HD map construction methods,
providing a comprehensive analysis of model performance
under adverse conditions.

Robustness Evaluation Metrics To assess the robustness
of HD map construction methods under multi-modal corrupted
scenarios, we introduce two evaluation metrics.

Resilience Score (RS) We define RS as the relative
robustness indicator for measuring how much accuracy a
model can retain when evaluated on the corruption sets, which
are calculated as follows:

RSi =

∑3
l=1 Acci,l

3×Accclean
, mRS =

1

N

N∑
i=1

RSi, (1)

where Acci,l denotes the task-specific accuracy scores, with
NDS (NuScenes Detection Score) for 3D object detection and
mAP (mean Average Precision) for HD map construction, on
corruption type i at severity level l. N is the total number
of corruption types, and Accclean denotes the accuracy score
on the “clean” evaluation set. mRS (mean Resilience Score)
represents the average score, providing an overall measure
of the model’s robustness across all types of corruption.

Relative Resilience Score (RRS) We define RRS as the
critical metric for comparing the relative robustness of
candidate models with the baseline model and mRRS as
an overall metric to indicate the relative resilience score. The

RRS and mRRS scores are calculated as follows:

RRSi =

∑3
l=1 Acci,l∑3

l=1 Accbasei,l

− 1, mRRS =
1

N

N∑
i=1

RRSi, (2)

where Accbasei,l denotes the accuracy of the baseline model.

IV. METHOD

Preliminaries For clarity, we first introduce the no-
tation and definitions used throughout this paper. Our
goal is to design a robust multi-modal HD map con-
struction framework that integrates data augmentation, a
novel multi-modal fusion module, and effective training
strategies to significantly enhance the robustness of multi-
modal fusion methods, as illustrated in Fig. 2. Formally,
let χ = {Camera,LiDAR} represent the set of inputs,
where Camera ∈ RB×Ncam×Hcam×W cam×3 denotes multi-
view RGB camera images in perspective view (with B,
N cam, Hcam, and W cam representing batch size, number of
cameras, image height, and image width, respectively), and
LiDAR ∈ RB×P×5 represents the LiDAR point cloud (with
P points, each containing 3D coordinates, reflectivity, and
beam index). The detailed architectural designs are described
in the following sections.

Data Augmentation To enhance robustness against sensor
corruptions, we employ data augmentation strategies for
both camera and LiDAR inputs. For camera data, we utilize
GridMask [30], which randomly drops image information by
applying a grid mask of the same size as the image, with
binary values (0 or 1). For LiDAR data, we apply a dropout
strategy [31] that randomly removes points from the point
cloud to simulate sensor noise and improve model resilience.

After augmentation, we process the data as follows: For
Camera Data, we utilize ResNet50 [32] as the backbone
to extract multi-view features and apply GKT [33] as the
2D-to-BEV transformation module, converting these features
into Bird’s-Eye View (BEV) space. This results in BEV
features FBEV

Camera ∈ RB×H×W×C , where H , W , and C
denote height, width, and number of channels, respectively.
For LiDAR Data, we follow the SECOND method [34]
for voxelization and sparse LiDAR encoding. The resulting
LiDAR features are projected into BEV space using a



TABLE I
COMPARISONS WITH STATE-OF-THE-ART METHODS ON NUSCENES VAL SET. L” AND C” REPRESENT LIDAR AND CAMERA, RESPECTIVELY.
EFFI-B0”, R50”, PP”, AND SEC” ARE SHORT FOR EFFICIENTNET-B0, RESNET50, POINTPILLARS AND SECOND, RESPECTIVELY. NOTE THAT

ROBOMAP (MAPMODEL) MEANS OUR METHOD IS INTEGRATED INTO AN EXISTING MAPMODEL. BEST VIEWED IN COLOR.

Method Venue Modality BEV Encoder Backbone Epoch APped. APdiv. APbou. mAP ↑

HDMapNet[4] ICRA’22 C NVT Effi-B0 30 14.4 21.7 33.0 23.0
VectorMapNet [5] ICML’23 C IPM R50 110 36.1 47.3 39.3 40.9
PivotNet [21] ICCV’23 C PersFormer R50 30 53.8 58.8 59.6 57.4
BeMapNet [22] CVPR’23 C IPM-PE R50 30 57.7 62.3 59.4 59.8
MapVR [23] NeurIPS’24 C GKT R50 24 47.7 54.4 51.4 51.2
MapTRv2 [24] IJCV’24 C BEVPoolv2 R50 24 59.8 62.4 62.4 61.5
StreamMapNet [25] WACV’24 C BEVFormer R50 30 61.7 66.3 62.1 63.4
MapTR [6] ICLR’23 C GKT R50 24 46.3 51.5 53.1 50.3
HIMap [26] CVPR’24 C BEVFormer R50 24 62.2 66.5 67.9 65.5
VectorMapNet [5] ICML’23 L - PP 110 25.7 37.6 38.6 34.0
MapTRv2 [24] IJCV’24 L - Sec 24 56.6 58.1 69.8 61.5
MapTR [6] ICLR’23 L - Sec 24 48.5 53.7 64.7 55.6
HIMap [26] CVPR’24 L - Sec 24 54.8 64.7 73.5 64.3

HDMapNet [4] ICRA’22 C & L NVT Effi-B0 & PP 30 16.3 29.6 46.7 31.0
VectorMapNet [5] ICML’23 C & L IPM R50 & PP 110+ft 48.2 60.1 53.0 53.7
MBFusion [27] ICRA’24 C & L GKT R50 & Sec 24 61.6 64.4 72.5 66.1
GeMap [28] ECCV’24 C & L GKT R50 & Sec 24 66.3 62.2 71.1 66.5
MapTRv2 [24] IJCV’24 C & L BEVPoolv2 R50 & Sec 24 65.6 66.5 74.8 69.0
Mgmap [29] CVPR’24 C & L GKT R50 & Sec 24 67.7 71.1 76.2 71.7
MapTR [6] ICLR’23 C & L GKT R50 & Sec 24 55.9 62.3 69.3 62.5
HIMap [26] CVPR’24 C & L BEVFormer R50 & Sec 24 71.0 72.4 79.4 74.3
RoboMap (MapTR) - C & L GKT R50 & Sec 24 67.8 70.4 76.4 71.5
RoboMap (HIMap) - C & L BEVFormer R50 & Sec 24 74.6 74.5 82.0 77.0

flattening operation as described in [35], yielding a unified
LiDAR BEV representation FBEV

LiDAR ∈ RB×H×W×C .
Cross-modal Interaction Transform Existing methods

convert sensory features into a shared BEV representation
and fuse them to create multi-modal BEV features. However,
LiDAR and camera features remain semantically misaligned
due to modality gaps. To address this, we propose a Cross-
Modal Interaction Transformer (CIT) module utilizing self-
attention to enrich one modality with insights from another.

First, we start with the BEV features from both the
camera (FBEV

Camera ∈ RB×H×W×C) and LIDAR (FBEV
LiDAR ∈

RB×H×W×C ) sensors. The BEV tokens TBEV
Camera ∈ RHW×C

and TBEV
LiDAR ∈ RHW×C are obtained by flattening each BEV

feature and permuting the order of the matrices. Next, we
concatenate the tokens of each modality and add a learnable
positional embedding, which is a trainable parameter of
dimension 2HW ×C, to create the input BEV tokens Tin ∈
R2HW×C for the Transformer. This positional embedding
allows the model to distinguish spatial information between
different tokens during training. Third, the input tokens Tin

undergo linear projections to compute a set of queries, keys,
and values (Q, K and V). Fourth, the self-attention layer
computes the attention weights using scaled the dot product
between Q and K, and then multiplies these weights by the
values to produce the refined output,

Z = Attention(Q,K,V) = softmax

(
QKT

√
Dk

)
V, (3)

where 1√
Dk

is a scaling factor. To capture complex relation-
ships across various representation subspaces and positions,

we adopt the multi-head attention mechanism,

Ẑ = MultiHead(Q,K,V) = Concat(Z1, · · · ,Zh)W
O.

(4)
The subscript h denotes the number of head, and WO denotes
the projected matrix of Concat(Z1, · · · ,Zh). Finally, the
transformer uses a non-linear transformation to calculate the
output features, Tout which are of the same shape as the
input features Tin,

Tout = MLP(Ẑ) +Tin. (5)

The output Tout are converted into F̂BEV
Camera and F̂BEV

LiDAR

for further feature fusion. We utilize the Dynamic Fusion
module to aggregate the multi-modal BEV feature inputs,
F̂BEV

Camera and F̂BEV
LiDAR, resulting in the aggregated features

Ffused. The output fused feature Ffused will be used for HD
Map construction task, with the decoder and prediction heads.

Modality Dropout Training Strategy To simulate real-
world sensor failures during training, we employ a Modality
Dropout strategy, where the BEV features of either the camera
or LiDAR (F̂BEV

Camera or F̂BEV
LiDAR) are randomly dropped with

a probability pmd. When a modality is dropped, pL denotes
the probability of retaining the LiDAR input, while pC =
1−pL represents the probability of retaining the camera input.
Thus, the overall probability distribution is as follows: the
probability of retaining both sensors is 1−pmd, the probability
of retaining only LiDAR is pmd · pL, and the probability of
retaining only the camera is pmd · (1 − pL). This strategy
enhances the model’s robustness to partial sensor failures by
randomly dropping modalities, enabling it to better adapt to
real-world scenarios where sensor malfunctions may occur.



TABLE II
THE SCORES RSc AND mRS FOR THE ORIGINAL MAPTR [6] MODEL AND ITS VARIANTS. RSc USING MAP AS METRIC.

Model Motion
Blur

Temporal
Mis.

Spatial
Mis. Fog Snow Camera Crash Frame Lost Cross Sensor Cross Talk Camera Crash,

Cross Sensor
Camera Crash,

Cross Talk
Frame Lost,
Cross Sensor

Frame Lost,
Cross Talk mRS↑

MapTR (Baseline) 70.00 76.94 69.05 67.94 19.55 78.69 74.75 98.47 84.99 77.40 58.14 73.50 54.27 69.51
MapTR (Baseline) + Fusion Module 80.03 75.28 68.48 68.26 23.67 70.77 64.15 96.34 87.93 69.52 56.57 62.94 51.03 67.31
MapTR (Baseline) + Data Augmentation 71.70 75.04 68.16 66.76 24.66 79.29 76.88 96.63 90.31 77.81 66.92 75.42 63.86 71.80
MapTR (Baseline) + Dropout Training 72.11 73.52 57.10 63.19 20.59 82.23 80.55 94.09 81.13 80.34 64.06 78.67 62.00 69.97
RoboMap (MapTR) 89.88 73.48 63.02 69.17 23.78 93.49 92.86 95.90 86.83 91.85 78.95 91.07 77.56 79.06

TABLE III
THE SCORES RSc AND mRS FOR THE ORIGINAL HIMAP [26] MODEL AND ITS VARIANTS. RSc USING MAP AS METRIC.

Model Motion
Blur

Temporal
Mis.

Spatial
Mis. Fog Snow Camera Crash Frame Lost Cross Sensor Cross Talk Camera Crash,

Cross Sensor
Camera Crash,

Cross Talk
Frame Lost,
Cross Sensor

Frame Lost,
Cross Talk mRS↑

HIMap (Baseline) 83.77 74.93 77.31 75.56 23.79 63.41 58.59 97.84 94.28 61.91 54.15 57.19 57.19 67.69
HIMap (Baseline) + Fusion Module 83.69 72.92 79.06 75.17 25.59 68.58 63.92 97.69 94.86 67.15 60.57 62.56 56.16 69.84
HIMap (Baseline) + Data Augmentation 84.35 73.30 79.21 75.44 25.50 66.27 61.11 97.52 94.93 64.81 58.63 59.64 53.63 68.80
HIMap (Baseline) + Dropout Training 84.21 72.09 71.73 70.93 27.13 87.41 85.15 96.49 91.50 85.69 76.56 83.39 72.92 77.32
RoboMap (HIMap) 90.34 72.54 72.32 76.69 30.44 93.17 92.58 97.21 93.24 91.68 83.26 90.95 81.43 81.99
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Fig. 3. Analyze the impact of different modules on the HD map construction
task using clean data.

V. EXPERIMENTS AND ANALYSIS

A. Experimental Settings

Dataset The nuScenes dataset [20] consists of 1,000
sequences collected by autonomous vehicles. Each sample is
annotated at 2Hz and includes six camera images capturing
the 360◦ horizontal field of view of the ego-vehicle. Following
the methodologies in [6], [26], we focus on three key
map elements: pedestrian crossings, lane dividers, and road
boundaries, to ensure a fair evaluation.

Evaluation Metrics For clean data, we adopt metrics
consistent with prior HD map studies [6], [26]. Average
Precision (AP) measures the quality of map construction,
while Chamfer Distance (DChamfer) quantifies the alignment
between predictions and ground truth. To assess model
robustness, we introduce the Resilience Score (RS) and
Relative Resilience Score (RRS), which evaluate the model’s
performance under data corruption or sensor noise, ensuring
reliability in real-world scenarios.

Implementation Details Our RoboMap framework is
trained on four NVIDIA RTX A6000 GPUs. We retrain two
state-of-the-art baseline models, MapTR [6] and HIMap [26],
using their official configurations from open-source reposito-
ries. All experiments employ the AdamW optimizer with a
learning rate of 4.2×10−4. Notably, RoboMap’s core compo-
nents—data augmentation, multi-modal fusion module, and
training strategies—are designed as simple yet effective plug-
and-play techniques, making them compatible with existing
camera-LiDAR fusion pipelines for HD map construction.

B. Comparison with the State-of-the-Arts

With the same settings and data partition, we compare
the proposed RoboMap model with several state-of-the-
art methods, including HDMapNet [4], VectorMapNet [5],
MBFusion [27], GeMap [28], MgMap [29], MapTR [6],
MapTRv2 [24], and HIMap [26]. The overall performance
of RoboMap and all baselines on the nuScenes dataset is
summarized in Tab. I.

The experimental results highlight several key observations:
multi-modal approaches consistently outperform single-modal
methods, demonstrating the importance of leveraging comple-
mentary information from both camera and LiDAR sensors
for HD map construction. As shown in Tab. I, RoboMap
achieves significant improvements over the original models,
with RoboMap (MapTR) surpassing the original camera-
LiDAR fusion MapTR model by 9 mAP on the nuScenes
dataset and RoboMap (HIMap) outperforming the previous
state-of-the-art HIMap fusion model by 2.7 mAP, setting
a new benchmark for vectorized map reconstruction. The
superior performance of RoboMap can be attributed to its
three core components—data augmentation, a multi-modal
fusion module, and advanced training strategies—which
collectively enhance robustness and accuracy. In summary,
RoboMap demonstrates substantial superiority over existing
multi-modal methods, highlighting its effectiveness in HD
map construction tasks.

C. Ablation Studies

To systematically evaluate the effectiveness of each compo-
nent in our proposed RoboMap, we conduct ablation studies
by incrementally adding individual strategies to the baseline
model and present the results in Fig. 3. Specifically, we design
the following ablation models: (1) RoboMap (w/o Fusion),
which integrates a cross-modal interaction transformation
fusion module into the original baseline model; (2) RoboMap
(w/ Data Augmentation), which incorporates image and
LiDAR data augmentation strategies into the original baseline
model; (3) RoboMap (w/ Dropout), which applies the
Modality Dropout Training Strategy to the original baseline
model; and (4) RoboMap (full), which combines all three
key components—data augmentation, a multi-modal fusion
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module, and training strategies—into the baseline model.
The ablation results demonstrate that each component

significantly enhances the baseline model’s performance.
Specifically, RoboMap (w/ Fusion), RoboMap (w/ Data
Augmentation), and RoboMap (w/ Dropout) outperform the
baseline MapTR model on the nuScenes dataset, achieving
gains of 3.3, 4.5, and 1.6 mAP, respectively. Similarly,
these variants surpass the state-of-the-art HIMap model, with
improvements of 0.85, 1.7, and 0.4 mAP, respectively. These
extensive experimental results validate the effectiveness of
each strategy in improving model performance, highlighting
the robustness and versatility of RoboMap.

D. Robustness of multi-sensor corruptions
To explore strategies that enhance robustness, such as

data augmentation, multi-modal fusion, and modality dropout
training, we evaluated the popular MapTR [6] and the state-
of-the-art HIMap [26] models. Tab. II and Tab. III present
their Resilience Scores, while Fig. 4 and Fig. 5 illustrate
their Relative Resilience Scores. Our analysis reveals two
key insights. First, while camera-LiDAR fusion methods
show promising performance by integrating multi-modal data,
many approaches assume complete sensor availability, leading
to low robustness when sensors are corrupted or missing.
Second, although individual strategies do not consistently
improve robustness across all multi-sensor corruption scenar-
ios, combining them significantly enhances model resilience.
Specifically, our approach improves the mRS metric by

9.55 and 14.3 compared to the original MapTR and HIMap
models, respectively, demonstrating the effectiveness of these
strategies in boosting robustness.

The experimental results emphasize the need to address
sensor vulnerabilities in multi-modal systems. While camera-
LiDAR fusion performs well under ideal conditions, its
dependence on complete sensor data makes it prone to failure
in real-world scenarios with incomplete or corrupted data.
By incorporating data augmentation, multi-modal fusion,
and modality dropout training, we significantly improve
robustness. These strategies enhance the resilience of both
MapTR and HIMap models and offer a framework for
building more robust multi-modal systems. The findings
highlight the potential of targeted enhancements to tackle
real-world challenges in sensor-based applications.

VI. CONCLUSION

In this paper, we improve the robustness of HD map con-
struction methods, essential for autonomous driving systems.
We propose a comprehensive framework integrating data
augmentation, a multi-modal fusion module, and innovative
modality dropout training strategies. Experimental results
demonstrate our method significantly enhances robustness on
a dataset with 13 types of sensor corruption. Additionally,
our approach achieves state-of-the-art performance on the
clean dataset. Overall, our model offers valuable insights for
developing more reliable HD map techniques, contributing
to safer and more effective autonomous driving technologies.
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